Тангенс угла найти

История вопроса

Тригонометрия берет свое начало в Древнем Вавилоне, когда ученые изучали свойства сторон прямоугольного треугольника. Именно тогда была сформулирована теорема, постулирующая соотношение катетов и гипотенузы, доказанная только через полторы тысячи лет самосским математиком Пифагором. Изначально использовался только синус, который рассчитывался как половина хорды окружности, описанной вокруг прямоугольного треугольника.

Тангенс появился гораздо позднее, когда перед учеными возникла задача определения длины тени, отбрасываемой объектами, стоящими перпендикулярно к поверхности земли. Тангенс был введен арабским математиком Абу-ль-Вафой в десятом веке. Восточный ученый составил специальные таблицы для определения тангенсов и котангенсов, однако это открытие так и не попало на европейский континент.

В Европе тангенсы были вновь открыты только в XIV веке: немецкий математик Иоганн Мюллер Региомонтан использовал функцию в астрономических расчетах. Термин «тангенс» произошел от латинского слова tanger, что означает «касание» и был введен в обиход в конце XVI века. Данный термин использовался для описания линии тангенсов, то есть касательной к единичной окружности. Региомонтан доказал теорему тангенсов, а также составил специальные таблицы значений функции, которые подошли как для плоской, так и для сферической геометрии.

Определение тангенса

Геометрически тангенс определяется как соотношение противолежавшего катета к прилежащему. Функция всегда рассчитывается для угла и не зависит от длин сторон. Пусть у нас есть треугольник со сторонами A, B и C, где C — гипотенуза. Тангенс угла AC будет рассчитываться как соотношение противолежащего катета B к прилежащему A или tgAC = B/A. Для угла BC тангенс рассчитывается как дробь, в числителе которой длина противолежащего углу катета A к прилежащему B, что математически записывается как tgBC = A/B. Угол AB образуется при двумя катетами, поэтому его невозможно посчитать. Катеты — стороны, образующие прямой угол, поэтому для угла в 90 градусов тангенс не существует.

Помимо геометрического определения, тангенс легко выразить через другие тригонометрические функции. Так, для угла A тангенс можно выразить при помощи отношения синуса и косинуса:

tgA = sinA / cosA.

Наша программа позволяет определить численное значение тангенса для любого значения угла. Для этого достаточно выбрать в меню соответствующую функцию и ввести в ячейку «Угол» величину угла в градусах или радианах. Если необходимо найти угол по известному значению тригонометрической функции, используйте функцию арктангенса. Для этого введите значение тангенса в соответствующую ячейку, после чего калькулятор вернет вам величину угла.

Рассмотрим пару примеров

Вычисление угла

Пусть в школьной задаче задан прямоугольный треугольник со сторонами A = 5 см, B = 12 см, C = 13 см. Требуется найти величины всех углов. Итак, очевидно, что угол AB, то есть угол, образуемый двумя катетами — прямой. Это известно из самого определения катетов. Теперь мы можем найти тангенс угла BC, который численно будет равен дроби, в числителе которой противолежащий катет A, а в знаменателе — прилежащий B. Следовательно, tgBC = A/B = 5/12 = 0,416. Зная тангенс, мы легко можем вычислить соответствующий угол при помощи онлайн-калькулятора. Для это выберем в меню функцию тангенса и введем значение 0,416 в ячейку tgα. Программа мгновенно отобразит величину угла, равную 22,58 градуса. Вычислить последний угол не составит труда, так согласно постулату о сумме углов треугольника, угол AC = 180 − 90 − 22,58 = 67,42 градуса.

Вычисление тангенса

В школьных задачах чаще всего используются стандартные углы, поэтому школьникам важно знать значения основных тригонометрических функций для этих углов буквально наизусть. Давайте при помощи калькулятора определим значения тангенсов для наиболее распространенных в задачах углов:

  • tg30 = 0,577;
  • tg45 = 1;
  • tg60 = 1,732;
  • tg90 — не рассчитывается;
  • tg120 = -1,732;
  • tg150 = -0,577;
  • tg180 = 0.

Выше мы выяснили, почему тангенс не рассчитывается для значений 90 градусов. Еще одно интересное значение — угол в 45 градусов. Почему тангенс равен 1? Ответ очевиден, ведь если в прямоугольном треугольнике один угол равен 45 градусам, то и второй имеет такую же величину. Следовательно, треугольник равнобедренный, его катеты имеют одинаковую длину, а их соотношение в любом случае будет равно 1.

Тригонометрия — сложная наука, которая не находит практически никакого применения в повседневной жизни. Однако без тригонометрии не было бы современных технологий, поэтому специалистам прикладных наук без нее никуда. Используйте наши онлайн-калькуляторы для расчета значений тригонометрических функций.

Тригонометрические функции

Запрос «sin» перенаправляется сюда; см. также другие значения. Запрос «sec» перенаправляется сюда; см. также другие значения. Запрос «Синус» перенаправляется сюда; см. также другие значения. Рис. 1
Графики тригонометрических функций: синуса косинуса тангенса косеканса секанса котангенса

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

прямые тригонометрические функции

  • синус ()
  • косинус ()

производные тригонометрические функции

  • тангенс ()
  • котангенс ()

другие тригонометрические функции

  • секанс ()
  • косеканс ()

В западной литературе тангенс, котангенс и косеканс обозначаются .

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т.д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и бесконечно дифференцируемые в области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках , а котангенс и косеканс — в точках .
Графики тригонометрических функций показаны на рис. 1.

Способы определения

Геометрическое определение

Файл:Trig functions.gifРис. 2
Определение тригонометрических функцийРис. 3
Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса с центром в начале координат . Всякий угол можно рассматривать как поворот от положительного направления оси абсцисс до некоторого луча , при этом направление поворота против часовой стрелки считается положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , ординату обозначим (см. рисунок).

  • Синусом называется отношение
  • Косинусом называется отношение
  • Тангенс определяется как
  • Котангенс определяется как
  • Секанс определяется как
  • Косеканс определяется как

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате , а косинус — абсциссе . На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если — вещественное число, то синусом в математическом анализе называется синус угла, радианная мера которого равна , аналогично для прочих тригонометрических функций.


Определение тригонометрических функций для острых углов

Рис. 4
Тригонометрические функции острого угла

В школьном курсе геометрии тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — прямоугольный треугольник с острым углом α. Тогда:

  • Синусом угла называется отношение (отношение противолежащего катета к гипотенузе).
  • Косинусом угла называется отношение (отношение прилежащего катета к гипотенузе).
  • Тангенсом угла называется отношение (отношение противолежащего катета к прилежащему).
  • Котангенсом угла называется отношение (отношение прилежащего катета к противолежащему).
  • Секансом угла называется отношение (отношение гипотенузы к прилежащему катету).
  • Косекансом угла называется отношение (отношение гипотенузы к противолежащему катету).

Построив систему координат с началом в точке , направлением оси абсцисс вдоль и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (см.: Теорема синусов, Теорема косинусов).

Тригонометрические функции являются периодическими функциями с периодами для синуса, косинуса, секанса и косеканса, и для тангенса и котангенса.
Тригонометрические функции любого угла можно свести к тригонометрическим функциям острого угла, используя их периодичность и так называемые формулы приведения. Это необходимо, например, для нахождения значений тригонометрических функций по таблицам, поскольку в таблицах обычно приводятся значения только для острых углов.

Исследование функций в математическом анализе

Определение тригонометрических функций как решений дифференциальных уравнений

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

с дополнительными условиями для косинуса и для синуса, то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

Определение тригонометрических функций как решений функциональных уравнений

Функции косинус и синус можно определить как решения ( и соответственно) системы функциональных уравнений:

при дополнительных условиях

и при .

Определение тригонометрических функций через ряды

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:

где

— числа Бернулли, — числа Эйлера (англ.)русск..

Производные и интегралы

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом:

См. также: Список интегралов от тригонометрических функций См. также: Интегральные тригонометрические функции

Свойства тригонометрических функций

Простейшие тождества

Основная статья: Тригонометрические тождества

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

Непрерывность

Синус и косинус — непрерывные функции. Тангенс и секанс имеют точки разрыва котангенс и косеканс —

Чётность

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

Периодичность

Функции — периодические с периодом , функции и — c периодом .

Формулы приведения

Формулами приведения называются формулы следующего вида:

Здесь — любая тригонометрическая функция, — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

или что то же самое

Некоторые формулы приведения:

Формулы сложения

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы для кратных углов

Формулы двойного угла:

Формулы тройного угла:

Прочие формулы для кратных углов:

следует из формулы дополнения и формулы Гаусса для Гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

где — целая часть числа , — биномиальный коэффициент.

Формулы половинного угла:

Произведения

Формулы для произведений функций двух углов:

Аналогичные формулы для произведений синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени

Суммы

Существует представление:

где угол находится из соотношений:

Однопараметрическое представление

Все тригонометрические функции можно выразить через тангенс половинного угла.

История названий

Основная статья: История тригонометрии

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как: араб. جيب‎ — «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом лат. sinus — «синус», имеющим то же значение. Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения введены Б. Кавальери и Уильямом Отредом и закреплены в трудах Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

Литература

  • Бермант А. Ф. Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1977. — Т. 26. — с. 204-206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, www.alleng.ru/d/math/math42.htm, 509 стр.
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И.М. Виноградов. — М.: «Советская Энциклопедия», 1984. — Т. 5. — с. 436.
  • Тригонометрические функции // Энциклопедический словарь юного математика/ Ред. коллегия, Гнеденко Б.В. (гл. ред.), Савин А.П. и др. — М.: Педагогика, 1985 (1989). — С. 299–301–305. — 352 с., ил. ISBN 5-7155-0218-7 (стр. 342, 343 — таблицы тригонометрических функций 0°–90°, в т.ч. в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений)/ Цыпкин А.Г., под ред. Степанова С.А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240–258. — 480 с.